
Hierarchical Image Annotation Using Semantic Hierarchies

Hichem Bannour
Applied Mathematics and Systems Department,

École Centrale Paris
92 295 Châtenay-Malabry, France

hichem.bannour@ecp.fr

Céline Hudelot
Applied Mathematics and Systems Department,

École Centrale Paris
92 295 Châtenay-Malabry, France

celine.hudelot@ecp.fr

ABSTRACT
Semantic hierarchies have been introduced recently to im-
prove image annotation. They was used as a framework for
hierarchical image classification, and thus to improve classi-
fiers accuracy and reduce the complexity of managing large
scale data. In this paper, we investigate the contribution
of semantic hierarchies for hierarchical image classification.
We propose first a new method based on the hierarchy struc-
ture to train efficiently hierarchical classifiers. Our method,
named One-Versus-Opposite-Nodes, allows decomposing the
problem in several independent tasks and therefore scales
well with large database. We also propose two methods
for computing a hierarchical decision function that serves
to annotate new image samples. The former is performed
by a top-down classifiers voting, while the second is based
on a bottom-up score fusion. The experiments on Pascal
VOC’2010 dataset showed that our methods improve well
the image annotation results.
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Categories and Subject Descriptors
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1. INTRODUCTION
Automatic image annotation is a challenging problem deal-

ing with the textual description of images, i.e. associating
tags or even better descriptive text to images. A wide num-
ber of approaches have been proposed to address this prob-
lem and to narrow the well-known semantic gap issue. Most
approaches rely on machine learning techniques to provide
a mapping function that allows classifying images in seman-
tic classes using their visual features [3]. However, these
approaches face the scalability problem when dealing with
broad content image databases, i.e. their performances de-
crease significantly when the concept number is high. This
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variability may be explained by the huge intra-concept vari-
ability and a wide inter-concept similarity on their visual
properties that often lead to incoherent annotations. Fur-
thermore, multimedia retrieval systems require an increas-
ing concept classes for annotating images in order to meet
user needs. Accordingly, current techniques are struggling to
scale up. Therefore, the only use of machine learning seems
to be insufficient to solve the image annotation problem. Se-
mantic structures, such as semantic hierarchies, appear to be
a good alternative to reduce this problem complexity [1].

Semantic hierarchies have shown to be very useful to nar-
row the semantic gap. They identify the dependency rela-
tionships between concepts and provide valuable informa-
tion for many problems. Semantic hierarchies can improve
image annotation by supplying a hierarchical framework for
image classification, and allow for efficiencies in both learn-
ing and representation. Three types of hierarchies for image
annotation have been recently explored: 1) language-based
hierarchies: based on textual information [11, 5], 2) visual
hierarchies: based on low-level image features [8], 3) seman-
tic hierarchies: based on both textual and visual features [9,
6, 2]. Semantic hierarchies provide a meaningful semantic
structure that helps simplifying the complexity of the classi-
fication problem. Thus, this paper proposes a new approach
to effectively use semantic hierarchies as a framework for
hierarchical image classification.

2. RELATED WORK
Image annotation has been considered in the last decade

as a multi-class classification problem. To deal with a large
number of concept categories, many approaches proposed
to combine hierarchical structure with Support Vector Ma-
chines (SVM) classifiers [11, 8, 9, 6, 4]. These approaches
can be qualified as top-down methods, i.e. the class hier-
archy is built by recursive partitioning of the set of classes
[8, 4, 7], or as bottom-up methods, i.e. the class hierarchy
is built by agglomerative clustering of the classes [11, 9, 6,
2]. Two directions have been explored for hierarchical im-
age classification: using Decision Directed Acyclic Graphs
(DDAGs) [12, 11, 7], and using Binary Hierarchical Deci-
sion Trees (BHDTs) [8, 4]. Given C = 〈c1, c2, · · · , cN 〉 the
annotation vocabulary of the database, the DDAG based
approaches train N(N − 1)/2 binary classifiers and use a
DAG to decide about the belonging of an image i to a class
cj ∈ C. These methods allow at each node in a distance d
from the rooted DAG to eliminate d candidate classes from
C, resulting in a N − 1 decision nodes to be evaluated for
labeling a test sample. On the other side, BHDT based ap-
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classifiers training.

proaches build and use hierarchies as binary trees, i.e. data
are divided hierarchically into two subsets until each subset
consists of only one class. Data partition is often achieved
using a clustering algorithm. Thus, one SVM is trained for
each node of the tree, resulting in a log2 N SVM runs to
label a test sample. BHDT approaches target to optimize
the efficiency of SVM classifiers by reducing the unnecessary
comparisons while maintaining a high classification accuracy
[4]. However, BHDT and DDAG approaches focus on the
classification optimization and do not model in anyway im-
age semantics. Although these approaches allow increasing
classification accuracy, they constrain hierarchies to binary
structures resulting in a significant deadlock when the con-
cepts number is large. For instance, the method of [11] is in
a deadlock when the concept number exceeds 30, since in-
termediate concepts are extracted from WordNet using hy-
pernymy relationships which depth is limited to 15 levels.

Alternative approaches have emerged recently and pro-
pose the use of semantic relationships between concepts for
the building of hierarchies. Fan et al. [6] proposed to in-
corporate concept ontology and a multi-task learning algo-
rithm for hierarchical concept learning. The labeling of a
new sample is obtained by a voting procedure at all levels of
the hierarchy, i.e. |C + C′| SVM runs are necessary for la-
beling new images (C′ is intermediate concept nodes in the
hierarchy). In [5], a ’tree-max classifier’ based on ImageNet
hierarchy is proposed. A classifier at each node of the Im-
ageNet tree is learned. The decision function is computed
according to a target class and all its child nodes.

3. HIERARCHICAL CLASSIFICATION
In this paper we propose a new method for learning hi-

erarchical classifiers. Our method relies on the structure
of semantic hierarchies to train more accurate classifiers for
image classification. Subsequently, we propose two methods
for computing the decision function in order to hierarchical
image classification. The first one is a bottom-up approach
for hierarchical image classification by score fusion. Fusion is
performed by the spreading of scores starting from leaf nodes
until reaching the root node. The second is a top-down ap-
proach and is performed by classifiers voting. Starting from
the root node and according to classifier votes, the hierarchy
is traversed until reaching leaf nodes.

For the building of the semantic hierarchy we rely on our
previous work [2], where we proposed to compute a seman-
tic similarity between concepts in order to produce a hi-
erarchy faithful to image semantics. This measure, named
Semantico-Visual Relatedness of Concepts, integrates: 1) a
visual similarity which represents the visual correspondence
between concepts, 2) a conceptual similarity which defines a
relatedness measure between target concepts based on their

definitions in WordNet, and 3) a contextual similarity which
measures the distributional similarity between each pair of
concepts. The building of the hierarchy is based on a set of
rules to link together concepts that are semantically related.
Figure 1 illustrates the obtained hierarchy, which is a N-ary
tree like structure where leaf nodes are initial concepts. Mo-
tivation for this method is that the semantics of images and
data is much more complex than binary items.

3.1 Learning Hierarchical Classifiers
Based on the hierarchy structure, we propose in the fol-

lowing to train several classifiers that represent the same
concept at different levels of abstraction. These classifiers
are consistent with each other since they are linked by the
subsumption relationship, and will represent the same in-
formation with different levels of details. Therefore, these
classifiers results can be merged in order to achieve rele-
vant decision on the membership of an image to a class.
Concretely, given a class hierarchy, a classifier for each con-
cept node is trained by performing a One-Versus-Opposite-
Nodes (OVON) SVM. Indeed, in order to propose a method
that scales well with large image databases, a good strategy
would be to decompose the problem in several independent
tasks based on the hierarchy structure. Thus, instead of
considering all database images for training classifiers, we
will consider only images of children nodes of a given target
concept node. This is similar to cut a target node of a tree
from its upper part and treats it independently. Therefore,
for training a classifier of a target node, we took as positive
samples all images associated with its children leaf nodes.
So, if an image is annotated by ’cow’ it will also serves to
train the classifiers for ’Bovid’, ’Vertebrate’, etc. Negative
samples are all images of sibling nodes - cf. Figure 2.

3.2 Bottom-Up Score Fusion (BUSF)
Starting from leaf concept nodes and following the sub-

sumption relationships, we compute the average confidence
scores of all paths in the hierarchy. The decision function is
then computed according to the sign of this average score. A
practical standpoint is that the classification results of these
SVMs are independent. Therefore, it is also possible to run
all SVM classifiers to compute the membership degree of an
image to all classes. Subsequently, according to the hierar-
chy structure the decision function can be computed easily
for all leaf concepts. Thus, the complexity for labeling a
given image is ≤ (2N − 1). Let xvi be any visual represen-
tation of an image i, a classifier is trained for each concept
class cj in the hierarchy. N = |C|+ |C′| binary SVM OVON
are then used with a decision function G(xv):

G(xv) =
∑
k

αkykK(xvk, x
v) + b (1)



where K(xvi , x
v) is the value of a kernel function for the

training sample xvi and the test sample xv, yi ∈ {1,−1} the
class label of xvi , αi the learned weight of the training sample
xvi , and b is a learned threshold parameter. RBF kernel is

used for SVMs training K(x, y) = exp
(
‖x−y‖2
σ2

)
.

The final decision function to compute the membership
degree of an image z to a concept class cj is:

fcj (z) = sign
( 1

|S|
∑
k∈S

Gk(zv)
)

(2)

where S is the set of subsumer of cj . Gk(zv) is the decision
function of the classifier associated with concept k.

From a statistical standpoint, the final decision function
fx(z) is computed by achieving n measures of the same
event (n = |S| is the hierarchy depth). Thus, the uncer-

tainty about fx(z) can be computed as the standard devi-
ation σfx(z) = σ√

n
. Therefore, the final decision function is

√
n times more accurate than the one obtained from a single

classifier.

3.3 Top-Down Classifiers Voting (TDCV)
TDCV aims at decomposing the image classification prob-

lem into several complementary sub-tasks. It consists in
building several classifiers that are able to discriminate one
class from the others under a given parent node. Thus, to
reach the final decision about the class membership it is es-
sential to descend the hierarchy according to the classifier
decisions (votes).TDCV is efficient in terms of complexity
since it requires to train less than 2N − 1 classifiers for hier-
archical classification, and to evaluate less than log2 N deci-
sion nodes for labeling a test image - cf. Table 1. However,
TDCV is sensitive to the initial classification since classifiers
at the subsequent levels cannot recover from the misclassi-
fication of a test image that may occur in a higher con-
cept level. Thus, this misclassification can be propagated
to the terminal node. Nevertheless, the average precision is
strongly high for the nodes in highest levels of the hierarchy,
and therefore errors propagation is small - cf. Figure 3.

Image classification is performed top-down as illustrated
in Algorithm 1. Starting from the root node, the decision
functions of subsequent level nodes are evaluated. The nodes
with positive confidence value are recursively explored until
reaching leaf nodes. Several paths in the hierarchy can be
explored, and thus a test image can be associated to many
classes. If a path is explored, but all the leaf classifiers have
responded negatively, we keep the concept with higher con-
fidence value.

4. EXPERIMENTAL RESULTS
We used the Bag-of-Features (BoF) representation to de-

scribe image features, which is a widely known method. The
BoF model has shown excellent performances and became
one of the most widely used techniques for image classifica-
tion and object recognition. In our approach, image features
are described as follows: Lowe’s DoG Detector [10] is used
for detecting a set of salient image regions. A signature of
these regions is then computed using SIFT descriptor [10].
Afterwards, given the collection of detected region from the
training set of all categories, we generate a codebook of size
K = 1000 by performing the k-means algorithm. Thus, each
detected region in an image is mapped to the most similar

Algorithm 1: Top-Down Classifiers Voting

Input: A test image, the semantic hierarchy
Result: Image annotation
begin

Ω← immediate children nodes of the hierarchy root
while (|Ω| > 0) do

Υ← 0
foreach (k ∈ Ω) do

if Gk(xv) > 0 then
Υ← Υ + k

if |Υ| = 0 then
Υ← argmax

j∈Ω
Gj(xv)

Ω← immediate children of the nodes ∈ Υ
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Figure 4: Comparison of the OVON and the OVA
hierarchical classifiers on VOC’2010 dataset.

visual word in the codebook through a KD-Tree. Each im-
age is then represented by a histogram of K visual words,
where each bin in the histogram corresponds to the occur-
rence number of a visual word in that image.

Experiments are performed on Pascal VOC’2010 dataset.
We used 50% of the dataset images for training concept clas-
sifiers and the other images for evaluating the proposed ap-
proaches. To perform a fair comparison, we used the same
visual representation of images for all of these methods, i.e.
Bag-of-Features representation. The flat classification is per-
formed by |C| SVM OVA, where the inputs are the BoF rep-
resentation of images and the outputs are the desired SVM
responses for each image (1 or -1). We used cross-validation
to overcome the unbalanced data problem, taking at each
fold as many positive as negative images. Hierarchical clas-
sification with OVA classifiers is performed by training a set
of (|C+C′|) hierarchical classifiers consistent with the struc-
ture of the hierarchy in Figure 1. The baseline method is
built by taking the average submission results to VOC’2010
challenge. In the following, evaluations are performed using
the recall/precision curves and Average Precision score(AP).

In Figure 4, we compared our method (OVON) for train-
ing hierarchical classifiers to the One-Versus-All one. OVON
performs a better result than the OVA classifiers, with an
AP of 63.25% while 56.42% for the OVA hierarchical classifi-
cation. In Figure 5, we compare our methods for hierarchical
image classification to the other ones. Our methods achieve
a higher AP than the flat classification with a gain of +26.8%
for BUSF method and a gain of +16.04% for the TDCV
method. Compared to the baseline method our approaches
are slightly better. This can be explained by the efficient im-
age features used in the submission of VOC challenge, and



(a) AP 2nd layer concepts. (b) AP 3rd layer concepts. (c) Average Precision for the fourth layer concepts.

Figure 3: Recall/Precision curves for concepts of each level of the hierarchy.
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Figure 5: Obtained AP on VOC’2010 dataset for:
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Training Labeling
VOC’10
Training

VOC’10
Labeling

DDAG (N2 −N)/2 N − 1 190 t 19 t’

BHDT 2N − 1 log2 N 39 t 5 t’

TDCV ≤ 2N − 1 ≤ log2 N 32 t 4 t’

BUSF ≤ 2N − 1 ≤ 2N − 1 32 t 32 t’

Table 1: Complexity of our methods compared to
DDAG and BHDT. t, t’: stand for 1 unit of time.

the basic one used in our approach. Moreover, we used only
the half of the training set since we do not dispose of the
test set used in the challenge. Thus, the obtained results
are still promising and can be improved by incorporating
more sophisticated image descriptors. For comparison we
implemented the method of [11], and we compared it to our
methods for hierarchical image classification as illustrated
in Figure 5. The BUSF method achieves a higher AP than
the others with a gain of +8.99% compared to the TDCV
method and a gain of +10.76% compared to the method
proposed by [11]. The AP for these methods was as follows:
60.6% for the BUSF method, 51.61% for the TDCV method,
and 49.84% for the method of [11].

As illustrated in Figure 3, the classifiers accuracy de-
creases as we go deeper in the hierarchy. This is because
classes in higher level of the hierarchy are sufficiently vi-
sually different, i.e. it is easier to find a boundary that
separates these classes. They are also more balanced. For
instance, the ratio of positive/negative samples in VOC’2010
dataset is about 5%. OVON method allows overcoming this
problem as it decomposes image classification into several
sub-tasks. The ratio of positive/negative samples is 35.6%
for OVON, i.e. these classes are quite balanced and there is
no need for techniques as over-sampling or under-sampling
to recover the problem of unbalanced data.

5. CONCLUSION
Hierarchical image classification is often considered as a

binary classification problem. In this paper, we proposed
a new hierarchical classification methodology, based on se-
mantic hierarchies, which performs better on image anno-
tation. Our approach is based on the hierarchy structure
to efficiently train hierarchical classifiers, i.e. draws bene-
fits from the hierarchies structure to decompose the image
classification problem into several independent and comple-
mentary sub-tasks. We also proposed two methods for com-
puting a hierarchical decision function serving to annotate
images. The former is achieved by a top-down classifiers
voting, while the second is based on a bottom-up score fu-
sion. Compared to existing approaches, our methods achieve
higher accuracy on Pascal VOC’2010 dataset.
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